
Voxel engine for generation of procedural terrains
Fredrik Johansson

TNM084 Procedural Methods for Images
Linköping University
frejo851@student.liu.se

Figure 1: A cave system produced by the voxel engine.

ABSTRACT
This report describes the implementation of a voxel terrain engine
from scratch in C++ with the graphics API OpenGL and the shading
language GLSL. The engine uses a combination of marching cubes
and simplex noise to generate the voxels. In the result, images
of some generated terrains are shown as well as a performance
analysis of the engine.

1 INTRODUCTION
In video games and simulations, terrains tend to expand over a large
surface area. Modelling these terrains can be a tedious task and
result in a biased terrain. However, by using procedural methods
these terrains can be generated and expand to infinity.

An engine for this purpose were implemented during this project.
The engine generates a highly customizable voxel terrain using
noise functions.

2 METHOD
The engine was implemented in C++with the graphics API OpenGL,
the shader languageGLSL, theOpenGL ExtensionWrangler (GLEW),
the library GLFW and the mathematics library GLM. GLMwas used
to generate simplex noise which is based on the paper written by
Stefan Gustavson [3].

2.1 Voxel
A voxel is a position in a three-dimensional space. The voxels are
used as building blocks for the terrain. Each voxel has a side length
of one and is represented by 24 vertices with six values each. The
first three values contain the vertex position and the remaining
values contain the normal for that vertex. This explains why there
are 24 vertices instead of just eight since there are three normals
connected to each corner point. By using a combination of three
vertices a face can be drawn.

To draw a voxel, its vertices are sent to the GPU via OpenGL
in a Vertex Array Object (VAO). The VAO is designed to store
the information for a complete rendered object. Therefore, the
VAO can contain multiple Vertex Buffer Objects (VBO), in this
implementation it contains two. The first VBO contains all the
necessary corner points of the voxel. The second VBO contains the
normals corresponding to each corner point. Lastly an Index Buffer
Object (IBO) is created where the combinations of the vertices are
stored to create the voxel faces.

2.2 Noise
3D simplex noise were used to generate the terrain for cave systems.
If the noise value is larger than zero, voxels should be drawn.



Fredrik Johansson

For mountainlike terrain, multiple 2D simplex noise functions
were used to create fractal noise as a heightmap in the y-direction.
Fractal noise makes large terrains look more natural and it makes
the artifacts less apparent [2].

Multiple simplex noise functions were also used to add color
and texture to the voxels. High frequent noise with low amplitude
were used to add some texture to the voxels when looking closely.
There are also noise functions to add spots of moss to create the
illusion of a humid climate. Lastly, there are noise functions to add
variations in the color for the stone and the moss.

To achieve the look of each voxel having its own uniform color
and shade, the noise is rounded to the largest possible integer value
which is less than or equal to the noise value. This was possible
since the voxels side length is equal to one as mentioned in Section
2.1.

2.3 Chunk
By simply executing a draw call for every voxel a terrain could be
generated. However, for every draw call data is transferred between
the CPU and GPU. This is a relative slow process for the computer
and leads to poor performance for large terrains. To solve this the
number of draw calls had to be reduced. Therefore, chunks were
introduced.

Each Chunk consists of 16x16x16 voxels and are batched into a
single draw call. This results in a reduced number of draw calls, but
a problem remained. Each voxel would render its faces within the
chunks which is unnecessary and slows down the engine. Figure
2 illustrates what a chunk looks like without using any noise to
displace the voxels within the chunk.

Figure 2: A chunk consisting of 16x16x16 voxels.

2.4 Marching cubes
To solve the problem with the unnecessary faces being drawn, an
algorithm called Marching cubes [4] were implemented. The first
step of this algorithm is to determine which voxels are visible in
each chunk. Therefore, the algorithm iterates through each voxel in
each chunk and evaluates the noise value. If the value is above zero
the algorithm checks if the current voxels, six nearest neighbours
that have already been traversed are of air or stone. If a neighbour-
ing voxel is of air the current voxels vertices corresponding to the
direction of the neighbour are inserted into an array.

There is a problem with this approach, the voxel faces at the
edges of each chunk becomes invisible. This is solved by iteration
through the closest surrounding voxels and thereby also evaluating
the surrounding chunks edges.

Lastly, the gathered vertices are sent to the GPU in the same
manner as described in Section 2.1. With the help of this algorithm
only the necessary vertices are sent to the GPU, resulting in less
memory usage per chunk. For example, the size of the chunk il-
lustrated in Figure 2 would decrease from 98304 vertices to 6144
vertices. Figure 3 is an outside view of the optimized chunks in a
cave system. Figure 6 illustrates the inside of this particular cave
system.

Figure 3: Outside view of a cave system consisting of 1331
chunks, each generated with simplex noise and the march-
ing cubes algorithm.

2.5 Infinite rendering
To allow for an immersive experience while at the same time de-
creasing the loading time of the engine, infinite rendering were
implemented. For every frame the engine evaluates the camera
position. If the camera moves between the edge of two chunks, new
chunks corresponding to the movement direction are added to a
render queue. If the camera position has already passed a specific
edge no new chunks are added. In practice, in the default state of
the engine this means that for every 16th voxel, new chunks are
added to the queue. Every new frame a chunk from the rendering
queue is transferred from the queue to the renderer. This makes
the terrain continuously generate as the camera is moving until the
allocated memory of the renderer is full.

2.6 Light and atmosphere
The engine uses simple directional light and diffuse and specular
reflection properties for the voxels.

To add some atmosphere, exponential fog were implemented
based on the instructions written by Sergiu Craitoiu [1].

3 RESULTS
The type of terrain the engine generates is highly customizable.
Therefore, the result is separated into two different versions. The
first version uses 2D noise to generate a heightmap formountainlike



Voxel engine for generation of procedural terrains

terrains. This version of the engine is illustrated in Figure 4 and 5.
The mountainlike terrains have been generated using fractal noise.

Figure 4: Assigning each voxel a y-value from Fractal noise.

Figure 5: Fractal noise with higher frequency in the x-
direction to determine the height of each voxel.

The second version uses 3D noise to generate cave systems.
Figure 6, 7 and 8 are some cave systems found while playing around
with the noise frequency and amplitude in the engine.

Figure 6: Cave generated with simplex noise using a lower
frequency in the y-direction.

Figure 7: Cave generated with simplex noise using high fre-
quencies.

Figure 8: Cave generated with simplex noise using lower fre-
quencies in the xz-direction.

3.1 Performance analysis
The total file size of the engine executable with the including shader
files is 640 kB. Table 1 and 2 shows the performance of the engine
using different hardware. The tests were executed using the same
noise frequencies and having the camera in a static direction. Infor-
mation about the computer specifications can be seen in the table’s
caption.

Table 1: Intel Core i7-4790K CPU @ 4.00GHz and AMD
Radeon R9 200 Series

num. of chunks avg. time per frame avg. frame per second
125 1.26 ms 790
343 1.96 ms 508
729 3.95 ms 250
1331 8.6 ms 116

4 CONCLUSIONS AND FUTUREWORK
In conclusion the engine does what it was implemented and de-
signed for. It is highly customizable and the performance is accept-
able for large terrains. What follows are some suggested improve-
ments that could be implemented.



Fredrik Johansson

Table 2: Intel Core i7-6500U CPU @ 2.50GHz and Intel HD
Graphics 520

num. of chunks avg. time per frame avg. frame per second
125 8.9 ms 112
343 11.9 ms 84
729 18.6 ms 54
1331 29.2 ms 34

As mentioned in Section 2.1 each voxel contains 24 vertices,
which is unnecessary. This could be reduced by computing the
normal with the cross product between two vertices. This would
lead to fewer values per vertex and result in a total of eight vertices
per voxel.

Currently, once the user updates the noise parameters, it affects
the not yet rendered chunks. This leads to sharp edges between the
newly generated chunks, and the previously generated chunks. A
solution would be to interpolate between the chunks or by recalcu-
lating every active chunk.

To increase the performance further frustum culling could be
implemented. Frustum culling would probably increase the perfor-
mance of the engine significantly.

In the current state of the engine no chunks are removed from
the renderer. This results in the engine performance dropping lin-
early to the amount of active chunks. To solve this an upgrade to
the rendering queue and rendering array would have to be imple-
mented.

ACKNOWLEDGMENTS
Thanks to Stefan Gustavson for providing me with GLSL code for
simplex noise.

REFERENCES
[1] Sergiu Craitoiu. Create a fog shader. in2gpu, 07 2014.
[2] Darwyn Peachey Ken Perlin David S. Ebert, F. Kenton Musgrave and Steven

Worley. Texturing & Modeling, Third Edition: A Procedural Approach. Morgan
Kaufmann Publishers Inc., 340 Pine Street, Sixth Floor, San Francisco, CA, United
States, 2002.

[3] Stefan Gustavson. Simplex noise demystified. Linköping University, 05 2015.
[4] William Lorensen and Harvey Cline. Marching cubes: A high resolution 3d surface

construction algorithm. ACM SIGGRAPH Computer Graphics, 21:163–, 08 1987.


	Abstract
	1 Introduction
	2 Method
	2.1 Voxel
	2.2 Noise
	2.3 Chunk
	2.4 Marching cubes
	2.5 Infinite rendering
	2.6 Light and atmosphere

	3 Results
	3.1 Performance analysis

	4 Conclusions and Future Work
	Acknowledgments
	References

