
Cloudmatch - A music recommender system

Fredrik Johansson
Johan Forslund

January 2020

Introduction

Spotify is globally available and is one of the most recognized music streaming
platforms in the world. In recent years it has become popular to use machine
learning algorithms to provide the users with recommendations. Spotify uses
such a system. However, from personal experience, we noticed that most of
these recommendations consists of already well established artists and barley
any amateurs.

Therefore, we came up with the idea to recommend tracks to Spotify users
from other more amateur friendly streaming platforms such as Soundcloud. To
achieve this we have been developing a tool that gathers data and extracts
feature vectors from Soundcloud. The tool is setup on a server and is accessed
via a web application.

Research question

During the project, we have worked to answer the following question:

• How can we determine which tracks are considered to be good recommen-
dations for our user, using the available data from Soundcloud?

Collecting data

For this project we use two external API’s to collect data; Spotify and Sound-
cloud. Both of these API’s are free to use and have lots of different data. For
example, one can find information about a user’s listening habits, meta infor-
mation about a song, or which users has liked a particular song.

The data from Spotify is used to learn what kind of music our user is lis-
tening to. This consists of the user’s most played artists and the genres that
these artists play. This is all we need to create an overall picture of what the
user often listen to. To get this data in a web application, we followed the

1

steps in Spotify’s authorization guide [1] and then we called the API endpoint

/v1/me/top/artists .

The data collection from Soundcloud is a bit more tricky. Here we want to
get data about lots of different users on the platform. The idea is to pick out a
few different songs with different genres, and then for every user that has liked
any of these songs we extract that users favorite tracks. By doing it this way,
we hopefully get a wide range of music listeners, which we want to be able to
match all kind of music.

The data collection is achieved by calling a few different endpoints. The
first endpoint is for finding a song with a specific genre, which can be done by

calling /tracks?genres=[] . This returns a list of songs, where we choose one

randomly. Next, we call an endpoint that returns what users has liked that

song: /tracks/:id/favoriters . This returns a list of users, where every user has

an unique ID. For each user we then call the last API endpoint, which returns

all songs each respective user has liked: /users/:id/favorites .

When combining all these calls, we get a huge list of users and information
about the songs that these users have liked. All the available information can
be seen in the Soundcloud API - Reference [2]. By using the reference we could
filter out the data which is unnecessary for our purpose.

In this project we have used 24 songs of different genres to find users that
may like the same kind of music. For each song we have picked out 5000 users
and for each user we get 200 liked songs. In total, this gives us information
about 24∗5000∗200 = 24, 000, 000 songs, and which users have liked each song.
A snippet of this data is shown below.

[

{

"user_id": 122232513,

"favorite_tracks": [

{

"id": 567349,

"likes_count": 81113,

"comment_count": 742,

"genre": "EDM",

"title": "Linkin park - meteora - breaking the habit",

"stream_url": "https://api.soundcloud.com/tracks/567349/stream"

},

{

"id": 657086237,

"likes_count": 1876,

"comment_count": 60,

"genre": "EDM",

"title": "Alan Walker X A$AP Rocky - Live Fast (Paris Looky

Remix) [FREE DOWNLOAD]",

"stream_url":"https://api.soundcloud.com/tracks/657086237/stream"

},

.

2

.

.

},

]

Creating feature vectors

Not all the parameters from the collected data are necessary for the clustering
process. For example, it is not that useful to compare the track titles when
determining similarity between tracks. It is much more useful to compare the
genre of of each track.

First we had to determine which genres to accept. We wanted to have the
most common genres, like ”rock” and ”pop”, but we also wanted to incorporate
some less known genres like ”ska” and ”afrobeat”.

From the collected data we iterate through each users favorite tracks. For
each track we look at the genre, if the genre match one of the accepted genres
we increment that genre in a list of all genres by one. When all the tracks
have been iterated through we divide the list with the number of tracks for that
user. This results in a vector with a mean genre for the user which is much
easier to handle than the initial collected data. One feature vector can be seen
below, each element represent a genre. For example, this particular user listens
to about 4.76% “acoustic” and 2.38% “ambient”.

[0.047619047619047616, 0.0, 0.0, 0.0, 0.023809523809523808, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.047619047619047616,

0.0, 0.0, 0.0, 0.0, 0.0, 0.047619047619047616, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.09523809523809523, 0.0, 0.023809523809523808,

0.5714285714285714, 0.0, 0.023809523809523808, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.023809523809523808, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.023809523809523808, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.023809523809523808, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.047619047619047616, 0.0, 0.0, 0.0]

The feature vectors will give us a space of different users with different
mean genres. Since we have 126 dimensions in our feature space, it is of course
impossible to visualize. However, we can pick out two genres (say rock and pop)
and create a scatter plot in two dimensions, see below.

3

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Rock

P
o
p

Here we can see how different users have different taste. Some users only listens
to rock while some tends to prefer pop, but most are somewhere in between.
When extending this to 126 dimensions, we can imagine how this creates a space
with feature vectors, and we are now able to match a new user from Spotify
against all these users from Soundcloud.

Matching in feature space

The next step is to match our user from Spotify against all the users on Sound-
cloud. We want to find a group of users to match with, preferably users with
some favorite tracks in common. To find these users (feature vectors), we use
the Nearest Neighbour algorithm. This is available in Python with the machine
learning library scikit-learn, using the function sklearn.neighbors. This way we
can place our feature vector (that is created from Spotify data) into the feature
space the is built from the Soundcloud data, and then find the feature vectors
with the smallest Euclidean distance to.

The Nearest Neighbour algorithm will return the n closest feature vectors,
and we keep track of which feature vector represents which user. There is no
perfect n to choose, but we choose it by testing different values until we get sat-
isfying results. Since music is subjective, we have to settle with an approximate
value.

Giving recommendations

From these n users we then have to find some songs to recommend to our end
user. One can think of many ways to do this. Our method was to implement a
weighting system to prioritize songs that are a likely match. Each song belonging

4

to the group of n users gets a score, where a higher score means a better match.
Mathematically we can describe it as

score =
∑

wifi

where wi are the constant weights and fi are functions that define some informa-
tion about the song. The function that gets the largest weight in our application
is the function that counts how many of the n users have liked that particular
song. If many of the users that you have matched with have liked this song, it is
reasonable to determine that song as a good match. Another weighted function
returns the total number of listens that song has on Soundcloud. However, we
use f = 1

#listens to give the songs with too many listens a lower score. We
added this to exclude songs that are too famous and established.

Finally, the application chooses the songs with the highest score, hopefully
resulting in a list of tracks that matches the user’s taste.

Result

Currently the web application is not hosted on a web server. Instead the appli-
cation is hosted on a local server. The data collection and feature vector cre-
ation and matching is implemented in Python. The server setup is implemented
with the server framework Flask. The web application client is implemented in
JavaScript with the library React. Below are some images of the client. Figure
1 is a screenshot from the front page of the application. It consists of a simple
button prompting the user to login with Spotify. Figure 2 is a screenshot from
the Spotify login page provided by the API. After the user has given our al-
gorithm authentication to collect user data, the algorithm begins to match our
user with Soundcloud users. Once this process is finished, a list of tracks are
displayed, see Figure 3.

Figure 1: The front page of the web application

5

Figure 2: The user is redirected to the Spotify authentication login page

Evaluation

It is hard to evaluate the application, especially its scoring algorithm since
music can’t be objectively judged. However, we came up with a decent solution
using a confusion matrix and user tests. The idea is to first present tracks
with the highest score and let the user evaluate the result (true positives and
false positives). Then we present tracks with the lowest score and let the user
evaluate the result (true negative and false negative). From this we can calculate
the accuracy of the algorithm.

True
positive

p

p

False
negative

n

False
positive

n
True
negative

actual
value

prediction outcome

Summary

It is hard to find a perfect machine learning solution when the answer to the
problem is subjective. However, we can still create a tool that is able to go
through more data than a human ever could, which gives us the opportunity
to divide users into theoretic groups. In this project we were able to use data

6

Figure 3: The recommended tracks are shown in a list consisting of embedded
players provided by Soundcloud

about a user from Spotify to find a group of users on Soundcloud who likes the
same kind of music, at least the same kind of genres.

In the beginning of this report we stated a question: How can we determine
which tracks are considered to be good recommendations for our user, using the
available data from Soundcloud?. The general algorithm for solving this question
is summarized below:

1. Use Spotify API to fetch the top artists for the end user and calculate a
mean genre vector.

2. Use Soundcloud API to collect lots of songs and keep track of which user
has liked each song.

3. For each user from Soundcloud, calculate a mean genre vector.

4. Build a feature space from the Soundcloud mean genre vectors.

5. Match our user with n nearest Soundcloud users using Nearest Neighbor
algorithm.

6. Go through all n users and pick out songs using a weighted algorithm.
Songs that many of the n users like are considered a good match.

7

References

[1] Spotify, Authorization Guide, Retrieved: 27/01/20
https://developer.spotify.com/documentation/general/guides/authorization-
guide

[2] Soundcloud, HTTP API Reference, Retrieved: 27/01/20
https://developers.soundcloud.com/docs/api/reference

8

