
TNM095 - Artificial Intelligence for Interactive Media
December 26, 2020

Chess engine with an integrated AI
Fredrik Johansson1

Abstract
This report describes the theory and implementation of a chess engine written from scratch in C++ with an
integrated Artificial Intelligence(AI). The AI makes decisions by simulating future board states and evaluating the
positions using heuristics given by chess experts. The player can choose to play against the AI or let the AI play
against itself.
Source code: https://github.com/FredrikErikJohansson/chess-ai

Authors
1Media Technology Student at Linköping University, frejo851@student.liu.se

Keywords: Chess engine — Alpha-beta pruning — Artificial Intelligence

Contents

1 Introduction 1

1.1 Related work . 1
1.2 Limitations . 1

2 Theory 1

2.1 Board representation . 1
2.2 Moves . 2
2.3 Evaluation . 2
2.4 Minimax . 2
2.5 Negamax . 2
2.6 Alpha-beta pruning . 2
2.7 Quiescence search . 2

3 Method 3

3.1 Bitboards . 3
3.2 Chess rules . 3
3.3 Search function . 4

4 Result 4

5 Discussion 4

5.1 Transposition table . 4
5.2 Chess rules . 5

6 Conclusion 5

References 5

1. Introduction
Chess is one of the oldest games in the world, played by
millions of people worldwide. Chess involves no hidden in-
formation and can thus be described as a deterministic system.
This property has made chess a popular testing ground for
artificial intelligence researchers. However, chess is still an
unsolvable game due to the large number of possible board

states which can not be computed with the current available
hardware.

Chess bots simulates the board state for an arbitrary num-
ber of moves with a search function. For each state an evalua-
tion function calculates a score based on heuristics given by
chess experts. In theory, a deeper search would yield a better
move and it is therefore essential to design an efficient search
function to reach further depths. Since the search function
is highly coupled with the chess engine, a chess engine were
implemented from scratch during this project.

1.1 Related work
The two most well known chess bots are Stockfish and Al-
phaZero [1, 2]. Stockfish is an open source chess engine
based on traditional artificial intelligence methods with the
solely purpose to play chess. Whilst AlphaZero is designed
for generic problems using a neural network as a complement
to the search function.

1.2 Limitations
Due to the large number of board states, a chess bot based
on a neural network is unfeasible for this project as it would
require immense computing power and time for the training
phase. Instead, the project aims to implement some of the
core search features of Stockfish.

2. Theory
This section describes the theory behind the core functionality
of the chess engine, including the board representation and
move generation. Furthermore, it describes the theory behind
the search and evaluation function.

2.1 Board representation
A chess state consists of 64 squares, 6 types of pieces and
2 colors, and can be described by bitboards [3]. A bitboard

Chess engine with an integrated AI — 2/5

is a 64-bit binary representation of a number where each bit
represents a square of the board. By combining 12 bitboards,
any state can be represented. Bitboards are essential for the
performance of the engine since Single Instruction Multiple
Data(SIMD) operations can be utilized. The bitboards for the
initial state of the board is illustrated in Figure 1.

2.2 Moves
A move in the chess community generally refers to a ply
which denotes a half-move, that is a move of one side only.
The moves are generated differently for the sliding pieces
(rook, bishop, queen) and the non-sliding pieces (pawn, king,
knight). The attack-sets of the latter pieces can simply be
calculated from the bitboards using bitwise AND and NOT
operations. The move-sets for the sliding pieces are more
complex since they are highly dependent on the board state.
To generate these moves a method called magic bitboards
were used [4]. Essentially, all the possible moves for the
bishops and the rooks are stored in two separate tables. The
tables are of the sizes 64x4096 and 64x512 in respective order,
where the first dimension is the position of the attacking piece
and the second dimension is a index-key. The index-key can
be computed using various methods, the only requirement is
that each key is unique. Once the key has been computed, the
attack-sets can be derived from the current board state. The
queen’s attack-set is the bitwise OR operation of the rooks
and bishops attack-sets.

The engine handles moves by bitwise operations on the
board-state. The post-move board state is computed using
bitwise XOR operations where each move is stored in a stack.
For each move the possible consequences has to be considered.
For instance, if there was an capture, the captured piece’s bit-
board has to be updated. While unmaking a move, the last
inserted element of the stack is removed and all the conse-
quences of that move is undone.

2.3 Evaluation
The bot uses an evaluation function to determine its next move.
The eveulation function returns a score which is calculated
using material and positional score based on the current board-
state. The material score is the sum of the values of the players
pieces subtracted by the opponents pieces. Each piece type
has a unique value assigned to it, the values can be seen in
Table 1.

Table 1. Table of material score

Piece Score

Pawn 100
Knight 320
Bishop 330
Rook 500
Queen 900
King 20000

The positional score is given by the board squares that the
pieces occupy and it is piece type specific since their preferred
positions differs. The positional score for the white knights
can be seen in Figure 2.

2.4 Minimax
In order to simulate the board states a search function has to be
used. Minimax is a decision rule that minimizes the possible
loss for a worst case scenario. It is implemented as a depth-
first recursive function where the recursive calls alters between
the maximum player and the minimum player. The algorithm
requires a predetermined maximum depth to be able to execute
within a reasonable time frame since the only terminal nodes
are checkmates or stalemates. The algorithm can be visualized
by a tree structure where each node represents a board state.
This results in a branching factor equal to the number of
available moves from each node. In chess, the branching
factor is commonly said to be 35, and an analysis of 2.5
million games revealed an average of 31 moves per state [5].
This results in the complexity O(bd), where b is the branching
factor and d is the search depth. For instance, the search space
for a branching factor of 35 with a depth of 6 equals to 1.8
billion states. It is unfeasible to search through this space
within a reasonable time frame with the minimax algorithm,
even on a high-end computer.

2.5 Negamax
Negamax is a variant of minimax used to simplify its imple-
mentation. Negamax relies on the zero-sum property of a two
player game. The zero-sum property states that the gain or
loss of each player’s score is exactly balanced by the gain or
loss of the other player’s score.

2.6 Alpha-beta pruning
Alpha-beta pruning is a technique to reduce the search space
by pruning branches that does not affect the result. The current
maximum and minimum results are stored in two variables
called alpha and beta respectively. If the move ordering is
optimal, meaning that the best moves are always stored first,
the complexity is reduced to O(

√
bd). When reaching further

depths the majority of the nodes can be pruned which gives
a large performance boost to the bot. Figure 3 illustrates a
simple example with a chronological description of the steps
in alpha-beta pruning of a small tree with a branching factor
of 2 from the white’s perspective.

2.7 Quiescence search
By having a predetermined depth, a problem arises. The
problem can occur when the algorithm reaches a terminal node
that is not an checkmate or stalemate and evaluates the node
to something in favour of the current player. The algorithm
will then choose the action that leads to that terminal node.
However, if the search algorithm would have continued one
step deeper in the search it could have found that the terminal
node is in fact in favour of the opponent. The problem is
commonly referred to as the horizon effect and it mostly

Chess engine with an integrated AI — 3/5

Figure 1. The 12 bitboards representing the initial board state. The first row corresponds to the white pieces whilst the second
row corresponds to the black pieces. Each column represent a different piece type.

Figure 2. The positional score for the white knights.

happens when the opponent has the potential to capture a piece
after the predefined depth. To reduce the risk of the horizon
effect occurring, quiescence search can be used. Quiescence
search continues the search with a new predefined depth but
it only considers the captures which reduces the branching
factor. Some captures are more likely to be good or bad so the
move ordering is essential to prune as many nodes as possible.
A common move ordering technique is called Most Valuable
Victim - Least Valuable Aggressor(MVV-LVA). It orders the
move according to the relative score gain of the capture.

3. Method
The engine and the AI is implemented in C++ from scratch
using the theory described in the previous section. The engine
is shell based and uses utf-8 unicode to represent the pieces.

3.1 Bitboards
The initial board position bitboards and some initial puzzle po-
sitions are stored as constant 64-bit unsigned integers. Some
bitboard masks are also stored as constant arrays to simplfy
some bitboard computations. The magic bitboards generation
is based on a third-party library called magic-bits [6]. The
library were modified to store the bitboards in a single source
file and integrated properly into the project.

3.2 Chess rules
Some chess rules were simplified or excluded. The excluded
rules are:

• En pessant

• Repetition rules

• Dead position

The simplified rules are:

• Promotion

• Castle rights

The pawns are always promoted to queens to simplify the
implementation. The castle rights works properly for the
player since the moves are sequential. But since the bot
simulates many board states by making and unmaking moves
it may remove its castling rights. All the remaining rules are
implemented and works properly.

Chess engine with an integrated AI — 4/5

Figure 3. The search starts from the root node and searches
the tree using a depth-first search. Once the the algorithm
reaches the maximum depth or a terminal node, the node is
evaluated. In this case the node is given the score -1. The
search continues and the next terminal node is evaluated as 3.
Since this search is from white’s perspective, white is the
maximum player and the white node is therefore evaluated to
3 since it is the maximum of -1 and 3. The next terminal node
evaluates to 5 giving the white node a value of ≥ 5. This
means that the minimum player always chooses 3 over ≥ 5,
thus one node is pruned. The next two terminal nodes
evaluates to -6 and -4 resulting in -4 for the white node. This
gives the black node a value of ≤−4. The maximum of 3
and ≤−4 is 3 and thus the last nodes are pruned. White will
therefore choose the move corresponding to the red branch
from the root node. Picture by Sebastian Lague.

3.3 Search function
For every position the legal moves are computed and stored
in a vector. The vector is sorted based on the material score
and captures. The captures are also sorted using MVV-LVA.
Then negamax is recursively called for each move and for
each move the consequential moves are computed and sorted.
Once the predetermined depth has been reached, quiescence
search is recursively called for a new predetermined depth.
Quiescence search, searches the captures using MVV-LVA
until a terminal node has been reached. The terminal node is
evaluated using a evaluation function to determine its score.
The score propagates through the alpha and beta variables
further up the call stack and for each step the move is unmade.
Once the call stack is empty, the final score of the root node
has been computed and the board is back to its former state.
The root node with the highest score is the move chosen by
the bot.

4. Result
One simple way to identify if the logic of the bot works is to
let it play some puzzles. Figure 4 and 5 illustrates two puzzles
where white has checkmate in two moves. The performance
of the bot is highly dependent on what hardware it runs on,
how many legal moves there are, and how good the move

ordering is. However, on an average CPU (AMD Ryzen 7
3700U), depths up to 4+4 and 5+2 (Negamax+Quiescence
depths) executes within a reasonable time in a rapid game of
chess where each player has a total of ten minutes to make
moves.

(a) (b)

(c) (d)

Figure 4. (a) The initial position of the puzzle, white’s to
move. (b) white moves queen from D1 to H5 putting the
black king in check. (c) Black takes queen by moving rook
from H6 to H5. (d) White checkmates black by moving
bishop from D3 to G6.

5. Discussion
This section introduces the shortcomings of the AI and the
future work that could solve these issues. Chess programming
is a vast field with many small optimizations that overall
improves the performance of the bot. It is hard for a single
person to implement all these optimizations in a short time
frame.

5.1 Transposition table
Currently, the search algorithm has no memory of previous
searches. Therefore, many nodes will be searched multiple
times leading to unnecessary computations. A transposition
table(TT) is a hash table where the score and the correspond-
ing search depth of each searched node is stored [7]. This
means that the algorithm can prune even more nodes by a
constant look-up in the TT, resulting in better performance. It
can also be used to optimize the move ordering by storing the
Principal Variation(PV) which is a sequence of moves that the
program considers to be the best [8]. An unsuccessful attempt
to implement a TT where made using Zobrist hashing, which
is a technique to transform a board position into a number[9].

Chess engine with an integrated AI — 5/5

(a) (b)

(c) (d)

Figure 5. (a) The initial position of the puzzle, white’s to
move. (b) White moves rook from F4 to F6. (c) Black moves
rook from H8 to H6. (d) White moves knight from H3 to F4
putting the black king in checkmate.

5.2 Chess rules
For completion it would be nice to incorporate the excluded
rules and complete the simplified rules described in the pre-
vious section. Some code and comments for en pessant is
already included in the source.

6. Conclusion
In hindsight its fair to say that I misjudged the complexity of
the chess engine’s implementation which reduced my time
to implement the AI. If I would have used a library for the
engine in another programming language I may have been
able to increase the search depth by focusing more on the AI’s
implementation. However, my commitment to the engine’s
implementation resulted in a fast engine which is the core that
the AI runs on. With a working TT in place, I believe that the
bot’s performance would drastically improve. In conclusion, I
exceeded my initial goal of reaching a depth larger than five.

References
[1] Stockfish 12. https://stockfishchess.org/. Accessed: 2020-

12-26.
[2] David Silver, Thomas Hubert, Julian Schrittwieser, Ioan-

nis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot,
Laurent Sifre, Dharshan Kumaran, Thore Graepel, Tim-
othy P. Lillicrap, Karen Simonyan, and Demis Hassabis.
Mastering chess and shogi by self-play with a general re-

inforcement learning algorithm. CoRR, abs/1712.01815,
2017.

[3] Bitboards. https://www.chessprogramming.org/Bitboards.
Accessed: 2020-12-26.

[4] Magic bitboards. https://www.chessprogramming.org/Mag
ic Bitboards. Accessed: 2020-12-28.

[5] What is the average number of legal moves per turn?
https://chess.stackexchange.com/questions/23135/what-
is-the-average-number-of-legal-moves-per-
turn/24325#24325. Accessed: 2020-12-26.

[6] magic-bits. https://github.com/goutham/magic-bits. Ac-
cessed: 2020-12-28.

[7] Transposition table. https://www.chessprogramming.org/
Transposition Table. Accessed: 2020-12-28.

[8] Principal variation. https://www.chessprogramming.org/
Principal Variation. Accessed: 2020-12-28.

[9] Zobrist hashing. https://www.chessprogramming.org/Zobr
ist Hashing. Accessed: 2020-12-28.

	Introduction
	Related work
	Limitations

	Theory
	Board representation
	Moves
	Evaluation
	Minimax
	Negamax
	Alpha-beta pruning
	Quiescence search

	Method
	Bitboards
	Chess rules
	Search function

	Result
	Discussion
	Transposition table
	Chess rules

	Conclusion
	References

