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Figure 1: Face recognition segmentation and normalization pipeline

ABSTRACT
This report describes the theory and process of implementing a
face recognition algorithm using the computing software MATLAB.
Several image processing techniques and morphological operations
are used to detect and extract face features such as eigenfaces. This
information is then used formatching faces against a given database.
Alternative methods are also evaluated and discussed.

1 INTRODUCTION
The ability to detect familiar faces is a natural process for humans
and usually happens instantly. The human face has a lot of interest-
ing characteristics such as its ridge-like and downwards pointing
nose, or the arrangement of the eyes, mouth and chin. Furthermore,
a face can have a wide range of different types of facial expressions
which can further complicate things when trying to detect faces
computationally. Different emotions will result in a variety of op-
tions for where the eyes and mouths are actually located, which is
an essential task in getting a reasonable result. But there are several
factors that may interfere with recognizing a human face from an
image. Squinting, or even closed eyes together with clenched lips
might yield worse detection rates as well as facing away from the
camera.

The ability to do this computationally has become an area of
great interest because of its practical use-cases. Many people today
have access to a smartphone which has face detecting capabilities
to lock it. Because of this, unlocking it quickly becomes a necessity

to prevent it from becoming a nuisance. Modern face detection algo-
rithms have been studied by scientists and larger tech-corporations
for years, and achieving similar results can be difficult.

In this report we propose a face recognition pipeline consisting
of light compensation, normalization, extraction of eye and mouth
maps and feature extraction for each image to detect if they match
a correlating face in a given database.

This report is organized as follows: The aim of the project is
described in section 2. section 3 describes illumination compensa-
tion, skin detection, eye/mouth mapping and eigenfaces. Results
are presented in section 4. Section 5 discusses alternative methods
and finally section 6 draws the conclusions.

2 AIM OF PROJECT
Using prior image processing and analysis knowledge, this project
report aims to present the theory and implementation techniques
used for a face detection algorithm. The aim is to be able to recognize
a given image of a face and match it to a database and then return
its corresponding identification number, if the face is present in the
database. The algorithm should also be able to reject face candidates
if no matching face is detected in the database.

3 METHOD
The method for implementing the proposed face detection algo-
rithm is described in the following subsections. It is assumed that
all images available for the project satisfy the following conditions:

• Each image only contain one face
• Both eyes and mouth are clearly visible
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• The face has a maximum rotation of 10 degrees in relation
to the cameras horizontal axis

• The image is not too over/underexposed such that pixel
information is unusable. It should be possible to see a face
in the image.

The images used during this project come from the data set ’Faces
1999’ from Caltech which contains several images of a person under
varying lighting and exposure conditions. [3].

3.1 Lighting compensation
Before extracting necessary data from a facial image it is necessary
to normalize the image. The first step towards a normalized image is
to compensate for bad lighting conditions. In this project Reference
white light compensation were used which follows the assumption
that each image contains at least a bit of "real white" in certain
location such as the eyes. The image is then converted to theYCbCr
color space and the luminance (luma) channel is separated. If there
are more than 100 pixels present in the top 5% lighting value in the
luma they are set as a reference point. It then adjusts the individual
R, G and B-channels such that the mean of the reference white
pixels are linearly scaled to 255 (the maximum value).

3.2 Skin detection and face masking
The next step of the algorithm is to extract skin tones from the
faces. With the skin tone a face mask can be constructed which
corresponds to the outline of the face. The mask can then be used
to remove insignificant background clutter which might complicate
eye and mouth detection.

For skin color detection several different common color spaces
can be used to correctly detect faces. In this report, the YCbCr
color space was chosen since it aims to simulate human vision
and is based on opposite color theory (similarly to the HSV color
space). By linearly transforming the RGB color space to YCbCr and
separating to individual luma and chrominance (chroma) channels
it is possible to select pixels with values between specific color
ranges. This is efficient since many research studies assume that
the skin-tone colors of the chroma components are independent of
the luma component [6][7][8]. The following chroma value ranges
were selected and segmented from the original image.

77 < Cb < 200, 134 < Cr < 173 (1)

WhereCb andCr are the normalized blue and red chroma channels
respectively.

This operation leaves out the eyes and certain parts where the
person’s hair are blocking the skin. Therefore morphological open-
ing and closing operations were applied to create a segmented
binary image defining where the skin is located.

The binary image is then multiplied to the original image, re-
sulting in a correctly masked image containing only the face. The
whole process can be seen in Figure 2.

3.3 Eye map
By localizing the eyes from a facial image it is possible to determine
if the image is slightly rotated or scaled. The proposed algorithm
uses an illumination-based approach based on Hsu, Mottaleb and
Jain’s work at IEEE [2]. The method works by separating the blue

Figure 2: Skin detection and face mask creation

and red chroma channels based on the fact that the area around the
eyes contain high Cb and low Cr values [4]. This is calculated as
follows

EyeMapC =
1
3

{
(C2

b ) + (C̃r )
2 + (

Cb
Cr

)

}
(2)

whereCb andCr are the normalized blue and red chroma channels
respectively and (C̃r )

2 is the inverse of the red chroma channel
(1 −Cr ).

It is possible to emphasize darker and brighter areas in the face
with the help of the luma channel. Since the eyes are usually ob-
served to be in a darker area it is possible to use the morphological
operations erosion and dilation to construct another eye map seen
below.

EyeMapL =
Y (x,y) ⊕ дσ (x,y)

Y (x,y) ⊖ дσ (x,y) + 1
(3)

where Y (x,y) is the luma component and дσ (x,y) is the structuring
element used when dilating (⊕) and eroding (⊖).

Finally the eye map from both the chroma and luma components
are combined into a single final thresholded eye map to receive a
binary image mask.

EyeMap = EyeMapC · EyeMapL (4)

Figure 3: Eye localization and extraction progress

This operation might result in an image which contains more
than two blobs, that ideally should represent the location of the eyes.
Therefore, a set of rules are established to reduce the number of
blobs that candidates as eyes. The rules regard the blobs orientation,
ratio, solidity and position. Once these rules are applied, the blobs
which does not follow the rules, are discarded.

3.4 Mouth map
With the assumption that the mouth generally corresponds to the
chroma component Cr being greater than the chroma component
Cb , a mouth map is constructed. Furthermore, the mouth has a
relatively low response in the Cr /Cb feature and a high response
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inC2
r [1]. The mouth map is defined according to the equation seen

in (5) using the help variable η seen in (6).

MouthMap = C2
r · (C

2
r − η ·Cr /Cb )

2 (5)

η = 0.95 ·

1
n

∑
(x ,y)∈FG

Cr (x,y)
2

1
n

∑
(x ,y)∈FG

Cr (x,y)/Cb (x,y)
(6)

Where C2
r and Cr /Cb are normalized to the range [0,1], n is the

number of pixels within the face mask, FG. The parameter η is
estimated as the ratio of the average C2

r to the average Cr /Cb .

3.5 Face normalization
To achieve a sufficient comparison, the faces need to have a uni-
form size, position, rotation and color. With the combination of
the eye map and the mouth map, a face normalization process was
implemented.

As mentioned in 3.3 a set of rules help determine which blobs
are chosen as eye candidates. After these rules are applied to the
eye mask, the face normalization process determine the two most
likely eye candidates. This is done by evaluating the best set of eyes
for the mouth produced by the mouth map. The position and angle
of the eyes relative to each other and the mouth are evaluated, and
then the best pair is chosen.

The process constructs a triangle with corners in the center of
these candidates. Depending on the rotation and position of the
triangle, different operations were then used to align the face to
the center of the image.

Sizing and cropping is also necessary to remove irrelevant image
data such as background. Therefore, the alignment parameters were
adjusted to keep as much facial data as possible as well as removing
the irrelevant data. The face normalization process is illustrated in
Figure 4.

Figure 4: The process of face normalization

3.6 Eigenfaces
To apply face recognition to the normalized faces, we use eigenfaces.
This method is widely used in image recognition and the term eigen-
faces comes from the fact that they are composed of eigenvectors.
Eigenfaces describe variance of faces in a set of face images, which
is a useful metric when doing face recognition. The idea is to apply
principal component analysis (PCA) to a large set of face images,
which gives the eigenvectors of the covariance matrix that is built
from the images. We can then reduce the space dimensionality by
only considering the eigenvectors with the highest eigenvalues.

This results in a basis of eigenfaces that together characterizes the
variation among the face images, see Figure 5.

Figure 5: Eigenfaces with the 5 largest eigenvalues

The first step in creating the eigenfaces is computing the average
face vector µ by summing the pixels in each face image vector x
and then dividing by the number of samplesM (7).

µ =
1
M

M∑
i=1

xi (7)

We are then subtracting the average face vector from every face
vector (8) which represent the deviation from mean for every face
vector.

ϕi = xi − µ (8)

Every ϕi is then placed column wise in a matrix A which allows
us to compute the covariance matrix C as (9).

C = AAT (9)

To find the eigenvectors needed for PCA we have to compute
the eigenvectors for C , which unfortunately has dimensions nxn,
where n = imaдe_width ∗ imaдe_heiдht . This would be a much
costly operation, even for relatively small images. Instead we use a
shortcut to only compute the eigenvectors with most importance.
This is done by switching the matrix multiplication order in (9) as
(10).

C = ATA (10)

This will create a covariance matrix with dimension only as big
as the number of faces used, where the eigenvectors easily can be
computed. However, this will create eigenvectors with the same
dimension, though we seek eigenvectors that match the dimension
of the image vectors. We solve for the i best eigenvectors ui from
(9) by using Equation (11)

ui = Avi (11)

where vi are the eigenvectors computed from (10). By reshaping
the eigenvectors into the resolution of the original images we end
up with the eigenfaces for the image set. By linearly weighting and
combining the eigenfaces we can reconstruct face images, even
faces that are not in the trained set can be approximated. The
mentioned weights are used later when trying to match an input
image with a face image from the training set.
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3.7 Finding the correct face
The weights needed to reconstruct a specific face image is stored
in a vectorw j , computed as Equation (12).

w j = u
T
j ϕi (12)

Each face image in the training set will get assigned a weight vec-
tor. The same is valid for the input image that we want to perform
face recognition on. To find the most likely match, we choose the
face image from the training set that has a weight vector with least
euclidean distance from the input image weight vector. However,
care has to be taken for images outside of the training set since they
should be returned as not found. Therefore, a maximum allowed
distance from any image had to be added in order to achieve a
match.

3.7.1 Reliability
There are two main approaches for the reliability of a face recog-

nition program. The first approach is to accept a greater amount
of false positives (FAR) for an increased rate in face detection in
comparison to the second approach which rejects false positives
for increased security (FRR). The first approach tends to result in a
higher detection rate, but at the cost of security. During this project
the first approach was implemented, but it could easily be changed
by adjusting threshold parameters.

4 RESULTS
To test our implementation for recognizing faces from facial images
a testing program was written which would iterate through every
image and return its corresponding identification number. The
results would then be compared to the actual correct answer and
output the percent of correctly matched faces.

The database of facial images from Caltech (faces 1999) was used
for this project. The database was divided in four parts described
in Table 1 below.

Table 1: Database specifications

Database No. of
images

Comments

DB0 4 Images not in database
DB1 16 One image per person in good

conditions
DB1a 16 Rotated (max 10 degrees) and

scaled images from DB1
DB2 38 Several images per person with

varying lighting and color condi-
tions

DB3 96 Same as above but more images
per person (including DB1 per-
sons)

DB4 450 Same as above but more images

The algorithm was trained on DB4 and the resulting weights
were stored in .mat files. These weights were then used for addi-
tional training and testing on different databases. See the results in
table 2 below.

Table 2: Test results where DB1 and DB3 uses 100% of the
eigenfaces and DB4 uses 80% of the eigenfaces.

Training Data Test Data Accuracy

DB1 DB3 51%
DB3 DB1 100%
DB3 DB1a 100%
DB4 DB1 94%
DB4 DB3 97%

The number of eigenfaces that were used during classification
had an effect on the detection accuracy. Figure 6 shows the results
for different amount of eigenfaces. For this particular test, DB4 was
used to train and DB1 was used to test.

Figure 6: Detection accuracy using different percentages of
total eigenfaces

5 DISCUSSION
The results are based on the training data originating from DB4
which contains a single image per person with forgiving lighting
conditions and backgrounds. Due to this there are several factors
that can affect the result. It is therefore necessary to discuss alter-
native methods and ways of countering false positives to obtain
optimal results.

5.1 Improvements
5.1.1 Light compensation

There are several different light compensation techniques that
can be used for a task like face recognition. The one used in this re-
port is, as stated in 3.1, reference white light compensation. Another
appropriate method that could have been used is Gray world light
compensation. This method assumes that the average intensity of
the R, G and B channels should be equal, and there by scale the
channels accordingly. This gives a much more gray image, and can
in some cases be more efficient. The downside of this is that an
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image with a large coloured background would scale the channels
in an unwanted manner.

5.1.2 Skin detection and face masking
The face mask is an important feature in images that for example

have multiple faces or are harder to detect in general. In this case,
only images are used that contain exactly one face. These images
are also within a certain range regarding scale and rotation, which
makes the face mask less important.

As mentioned in 3.2, only theYCbCr color space is used to detect
the skin tone in the color images. However, the HSV color space was
also tested to mask out the face, both by itself and combined with
YCbCr . The results were worse in both cases and were therefore
discarded as a measure of detecting skin color when using the light
compensation at hand.

5.1.3 Eye map
As mentioned in 3.3 the eye map method uses an illumination-

based approach. The paper by Hsu, Mottaleb and Jain’s [2] also
propose two additional methods; Color-based and edge density
based. The color-based method involves taking the original color
image and converting it to a histogram equalized grey-level image.
It is then thresholded to extract the darkest regions of the image, and
if unwanted regions are present a component verification process
is used. This is based on the observation that the eyes often are
the darkest regions of a face. This approach works well for badly
illuminated images as well as images where the person has closed
eyes, but not very well for dark skin colors.

The edge density-based approach uses a Sobel edge kernel to
process the image and receive a sharp edge mask. It is based on the
observation that the eye area has higher edge density than other
regions of the face. Two erosions followed by three dilations are
then performed on the mask to further enhance the eye map. Hsu
proposes a hybrid method where the three detection methods are
combined into a single eye map that is defined only where at least
two of the methods have detected an eye.

We have experimented with the described hybrid method in this
project. However, it was discovered that both the color based and
the edge density based method gave poor results when trying to
detect the eyes. A reason for why the color based method gave poor
results might be the fact that the images that Hsu used in their
study had a different lighting setting with higher contrast. For the
images used in this report, the eyes could not be determined as
the darkest regions. When trying to lower the threshold further,
it gave too much noise from other regions of the face. Regarding
the edge based method, it was difficult (if not impossible) to find a
structuring element for the morphological operations that captured
the eyes without including other regions found by the Sobel kernel.
An idea for improving this would be to replace the Sobel kernel with
some other method to detect the eyes, possibly by using circular
Hough transform.

5.1.4 Face normalization
Since the mouth map in most cases produce only one mouth

candidate, the first one found is always chosen. This is done to make
the face normalization faster and more stable, since the eye map is
more often incorrect than the mouth map. However, this may lead

to the wrong mouth being chosen. This results in a skewed face
triangle in some cases.

Aside from choosing thewrongmouth in themouthmap, the face
normalization works well, given at least two correct eye candidates.
If the face mask or eye map doesn’t work properly either blobs
mistaken for eyes will be selected, or the image will not be included
in the calculations.

If no correct eyes are produced from the eye map and faulty ones
are chosen instead, the normalized face is going to be incorrect and
create errors in the recognition process.

5.1.5 Eigenfaces
The method of creating eigenfaces worked well for this set of

images. It was relatively easy to detect faces and crop them out
which made it straight forward to then create the eigenfaces. This
would have been much harder if the images were not as simple, for
example if images contained multiple people or covered faces.

The number of eigenfaces used during the classification had an
affect on the accuracy, though not as much as one could think.
Figure 6 shows that the accuracy is relatively stable independent
on the number of eigenfaces used. However, if we choose to few (<
10%) eigenfaces, the accuracy drops significantly as the eigenfaces
can no longer represent the faces in a correct manner. At around
80% the plot reaches a peak where the accuracy is maximum.

We had some problem at first to reconstruct the original im-
ages using the mean image added to a linear combination of the
weights. The problem was that the weight contribution had much
bigger values which totally dominated the result. This was solved
by normalizing each eigenface vector before applying the weights,
something that was not mentioned in most of the reports on this
subject.

5.1.6 LDA and Fisherfaces
As opposed to the unsupervised PCAmethod, it is possible to use

the supervised Linear Discriminant Analysis (LDA) which makes
use of both data and class information, which is very effective
when comparing variance in classes. This is the main difference
between PCA and LDA. They both work by looking for linear
combinations of variables which best explain the given data. LDA is
a generalization of Fisher’s linear discriminant (FLD) which aims to
maximize inter-class variance and minimize intra-class variance. A
class is composed of several images with varying conditions but of
the same person/identity. FLD tries to "shape" the scatter to make it
more reliable for classification and recognizing whose face is on the
image [9]. The within-class (intra-class) scatter matrix is defined as

Sw =
C∑
j=1

nj∑
i=1

(xi j − µ j )(xi j − µ j )
T (13)

whereC is the number of sample images, i is the ith sample of every
class, µ j is the mean of the class j , and nj is the number of classes j .

Furthermore, the between-class (inter-class) is defined as

Sb =
C∑
j=1

(µ j − µ)(µ j − µ)T (14)

where µ represents the mean of all classes.
As described in the paper by P. N. Belhumeur, J. P. Hespanha

and D. J. Kriegman [9] it is possible to combine Eigenfaces and PCA
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together with LDA to compute class-representative Fisherfaces
using the following methodology

• Reshape every training image to a vector and organize every
vector into a matrix.

• Use PCA on the matrix to obtain eigenfaces.
• Use the eigenfaces and project them into PCA subspace to
receive reduced dimensionality feature vectors.

• Perform LDA on these vectors to obtain fisherfaces which
represent each class. Maximize inter-class variance and min-
imize intra-class variance. Use these matrices to solve for
eigenvalues and calculate fisherfaces.

• Use fisherfaces to project training images into LDA sub-
space to receive reduced dimensionality feature training
vectors.

• Use fisherfaces to project test images into LDA subspace to
receive reduced dimensionality feature test vectors.

• Use KNN (or any other classifier) using both training and
testing feature vectors

This might have been a more direct way to combine both meth-
ods and may have yielded better results. We tried this approach but
due to time constraints and undesirable results it was decided to
simply use the eigenfaces method instead.

5.2 Different approaches
The approach used in the project is from an image processing stand-
point. There is worth to mention that there are machine learning
methods available for face detection and recognition. However,
these methods have some drawbacks compared to the image pro-
cessing method. The machine learning approach usually requires
a larger amount of data and training phase. There are also several
different methods of normalizing illumination in images, such as
the LogAbout method.

5.2.1 SQI and LogAbout
To even out contrast levels in all images, histogram equalization

was used. This is the most common illumination normalization
approach but it is possible to use illumination-free methods like
Self Quotient Image (SQI) and LogAbout. SQI is composition of the
reflectance and the lighting of the scene. Furthermore, the lighting
can be estimated using a low-pass filter since it is seen as a low
frequency component of the image [5].

LogAbout is a technique where you apply a high-pass filter to
an image followed by a logarithmic transformation on it

д(x,y) = a +
ln(f (x,y) + 1)

b · ln · c
(15)

where f (x,y) is the original image together with a, b and c which
are parameters that determine the location and shape of the loga-
rithmic transformation.

You can then use both methods by processing the SQI output
through a high-pass filter andmapping it using equation. The fusion
between SQI and LogAbout was done by using equation 15.

LDA is then used to extract feature vectors from each face and
the Euclidean distance is measured, very similarly as described in
chapter 3.7.

6 CONCLUSION
This project proves that it is doable to construct a face recognition
pipeline in a short amount of timewith some prior image processing
knowledge. The pipeline is general and abstract enough for further
development in the form of new features to expand the capabilities
of the program.

Designing an efficient face detection algorithm can be very diffi-
cult since there are many different factors and requirements of the
image for it to successfully detect a face. Multiple faces, closed eyes,
tilted head or bad lighting conditions can all contribute to making
it more difficult when detecting faces. The use of hybrid methods
based on multiple scientific papers compared to single papers tends
to increase the robustness of the program but can lead to drawbacks
as well. There are also certain normalization methods which tend to
favor specific image conditions. Recently, machine-learning based
algorithms and methods have been successful in facial detection in
images and may pave the way for new opportunities in correctly
classifying faces using relevant training data.
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